Unit 10 - Kinetic Molecular Theory Notes

Kinetic Molecular Theory KMT describes the behavior of gases in terms of ______ in ______. • It makes the following assumptions about gases: Particle _ Particle ______ Particle ______ **Gas in a _____ (closed system)** A. Gases are composed of particles that: Occupy virtually no _ Are ______ apart from each other Its volume is made up of mostly _____ ___ _ B. Gas molecules are in _____, ____, ____, straight-line motion C. Collisions between gas molecules are _____. No ______ of motion (i.e. ______) is lost No ______ is lost The molecules are not ______ D. Gas particles do NOT _____ or _____ each other E. All gases have the same ______ kinetic energy at a given ______ - Average KE of gas molecule is directly proportional to the Kelvin temperature of gas (K). Units

Temperature

- Pressure 🖒 _____, ____, ____, of _____
- Volume 🖒 _____, ____, ____, ____, ____,

Gas Pressures

- When gas particles collide with the walls of their container, they exert ______ on the walls.
- Pressure is _____ per unit area
- - Varies at _____ locations

Devices Used to Measure Pressure

- A _____ measures the pressure exerted by the ______
- The ______ of the mercury column measures the pressure exerted by the atmosphere.
- The ______ pressures occur at the ______ altitudes.
 - If you go up a mountain, atmospheric pressure ______
- Standard atmosphere (atm) supports a _____ mm column of _____
 - 1 _____ = 760 _____
- SI unit for measuring pressure is _____ (_____)
- Equivalent pressure units:
 - 1 atm = 760 mm Hg = _____ psi = _____ kPa

How are number of particles and gas pressure related?

- The more often gas particles ______ with the walls of the container, the greater the
 - More _____ = More _____
- Pressure is directly ______ to the ______ of particles
 - ______ the number of gas particles in a basketball ______ the pressure

How are temperature and gas pressure related?

- At ______ temperatures, the gas particles have ______ kinetic energy.
 - Move faster and ______ with the walls of the container ______ often and with ______ force, so the pressure ______
- If ______ of container & particles of gases are NOT changed (stay constant):
 - Pressure of gas ______ with direct proportion to ______ (in Kelvin)

Summary:

Factors Affecting Gas Pressure

- A. Amount of Gas
 - 1. \uparrow molecules = \uparrow collisions with walls = \uparrow pressure
 - 2. \Downarrow molecules = \Downarrow collisions with walls = \Downarrow pressure
- B. Volume
 - 1. \uparrow volume = \uparrow surface area = \Downarrow collisions *per unit of area* = \Downarrow pressure
 - 2. \Downarrow volume = \Downarrow surface area = \Uparrow collisions *per unit of area* = \Uparrow pressure
- C. Temperature
 - 1. \uparrow temperature = \uparrow molecule speed = \uparrow frequent (and harder) collisions = \uparrow pressure
 - 2. \Downarrow temperature = \Downarrow molecule speed = \Downarrow frequent (and softer) collisions = \Downarrow pressure